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Quantum fusion of independent networks 
based on multi-user entanglement swapping
 

Yiwen Huang1,5, Yilin Yang1,5, Hao Li1,5, Jiayu Wang1, Jing Qiu1, Zhantong Qi1, 
Yuting Zhang1, Yuanhua Li    1,2  , Yuanlin Zheng    1,3   & Xianfeng Chen    1,3,4 

With the advanced development of quantum science, constructing a 
large-scale quantum network has become a prominent area in the future 
of quantum information technology. Future quantum networks promise 
to enable a wide range of groundbreaking applications and to unlock 
fundamentally new technologies in information security and large-scale 
computation. The future quantum internet is required to connect 
quantum information processors to achieve unparalleled capabilities in 
secret communication and enable quantum communication between any 
two points on Earth. However, existing quantum networks are primarily 
designed to facilitate communication between end users within their 
own networks. Bridging different independent networks to form a fully 
connected quantum internet has become a pressing challenge for future 
quantum communication systems. Here we demonstrate the quantum 
fusion of two independent networks based on multi-user entanglement 
swapping, to merge two 10-user networks into a larger network with 18 users 
in a quantum correlation layer. By performing Bell state measurements 
between two non-neighbouring nodes, users from different networks can 
establish entanglement, allowing all 18 users to ultimately communicate 
with each other using the swapped states. Our approach opens up promising 
opportunities for establishing quantum entanglement between remote 
nodes across different networks, facilitating versatile quantum information 
interconnects and enabling the construction of large-scale intercity 
quantum communication networks.

Driven by the rapid advancement of quantum information technologies1–6,  
quantum internet has emerged as a critical objective for quantum 
information processing7–11. The future quantum internet is expected to 
facilitate a range of innovative quantum technologies and enable secure 
communication protocols between any two users on a global scale12–16. As 
the paradigmatic quantum mechanical platform, entanglement-based 
quantum networks enable a wide range of powerful applications such 
as secure communication17,18, distributed quantum sensing19,20 and 

fundamental tests of quantum mechanics21–23. Recently, fully connected 
quantum communication networks based on quantum entanglement 
have garnered considerable interest, as this network configuration ena-
bles simultaneous communication among multiple users while minimiz-
ing infrastructure and hardware requirements24–27. It is an important 
candidate for establishing a fully connected quantum Internet, which 
may revolutionize the way of information exchange in the future. So far, 
existing fully connected networks constructed using dense wavelength 
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construct two fully connected 10-user quantum networks, each using 
a single wavelength channel per end node. By sending one node to a 
third party for BSM, each pair of users in different networks can gener-
ate polarization entanglement after entanglement swapping and the 
two independent networks are ultimately merged into a larger fully 
connected quantum network with 18 end nodes. Our approach offers 
a crucial capability for quantum communication across different net-
works and is advantageous for building a large-scale quantum internet 
that enables communication among all users.

Results
Scheme of network fusion and network architecture
Network fusion based on entanglement swapping. Implementing 
the fusion of two quantum networks involves two main technical chal-
lenges. First, two independent networks need to have a fully connected 
topology so that their users can communicate with each other. Second, 
high-quality entanglement swapping is required for all the involved 
entangled states simultaneously. The overall scheme of quantum 
network fusion based on multi-user entanglement swapping is shown 
in Fig. 1, which is conceptually illustrated using three layers of abstrac-
tion. Figure 1a shows the physical topology of the fused network, which 
primarily consists of three parts: the physical components of network 
A, network B and the third-party node Charlie responsible for the BSM. 
Figure 1b,c illustrates the quantum correlation layers of networks A 
and B with a fully connected mesh before the network fusion, while 
Fig. 1d shows the overall quantum correlation layer of the integrated 
network after the network fusion. The two fully connected networks A 
and B, consisting of M (M ≥ 2) and N (N ≥ 2) end nodes, respectively, are 
finally merged into a larger fully connected network C with M + N − 2 
end nodes, as shown in Fig. 1d. To establish entanglement between 
the end nodes of the two quantum networks through entanglement 
swapping, two end nodes from the two networks respectively are sent 
to the third-party Charlie to perform a joint measurement, and then the 
measured results are fed forward to the remaining end nodes of the two 

division multiplexing (DWDM) have primarily been designed to enable 
communication between end users within the same network. To enable 
the communication between the end users in different independent 
networks in future, an efficient and feasible technique is required for 
quantum processors to achieve the quantum fusion of two independ-
ent networks, which means the two networks are merged into a larger 
network in the quantum correlation layer.

Entanglement swapping28–30, which makes two independent quan-
tum entangled states become entangled without direct interaction, 
provides a promising technology for bridging two independent quan-
tum networks31–33. Entanglement swapping between two end nodes in 
different networks has been developed to connect these networks in 
a point-to-point topology, enabling communication between the two 
specific nodes after a Bell state measurement (BSM)34,35. However, net-
work fusion based on entanglement swapping of multi-user entangled 
states, which would enable simultaneous communication among all 
users in two different networks, has not yet been demonstrated. Imple-
menting the coherent fusion of two independent multi-user networks 
is extremely important for developing the future quantum internet. 
Meanwhile, in the existing fully connected networks constructed using 
the DWDM technique or beam splitters24–27, the number of quantum 
correlations and communication links becomes increasingly complex 
and grows quadratically as the number of users increases, leading to 
increased system complexity and performance degradation. Imple-
menting Hong–Ou–Mandel (HOM) interference—a prerequisite for 
entanglement swapping—among multiple users is very challenging 
in these networks because achieving high-visibility HOM interference 
requires photons to be indistinguishable in all degrees of freedom, 
including wavelength36. A novel and feasible scheme is needed to over-
come this challenge for constructing a large-scale quantum network.

In this work, we present the first experimental demonstration 
of deterministic network fusion of two independent fully connected 
networks based on multi-user entanglement swapping. We first develop 
a scheme—active temporal and wavelength multiplexing (ATWM)—to 
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Fig. 1 | Scheme of quantum network fusion, network architecture and  
operation principle. a, The physical configuration of network fusion based  
on entanglement swapping. Two fully connected networks send one node to  
a third party for BSM. b,c, Topological structures of networks A (b) and B (c) in  
the quantum correlation layer. Both the networks have a fully connected logical  

topology. d, The topological structure of the new network after quantum fusion 
of networks A and B. e, The operation principle of the wavelength-multiplexing 
scheme for the unique design of pump pulses. f, Illustration of the entangled 
photon pair generation and distribution. g, The operation principle of the active 
temporal multiplexing scheme.
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networks. By quantum entanglement swapping, two multi-user entan-
gled networks consisting of M and N quantum nodes, respectively, can 
be merged into a new larger multi-user entangled network consisting 
of M + N − 2 quantum nodes.

ATWM scheme. To construct an N-user network with a fully connected 
graph in the quantum correlation, the quantum processor needs to 
prepare a minimum of N(N − 1)/2 links to allocate them to the end users. 
Different from pre-existing networks, which allocate the entangled 
photon pairs to different users by using dense wavelength division 
multiplexers or beam splitters, we achieve the fully connected topology 
of the network by directly pumping a nonlinear waveguide based on 
the ATWM scheme. The principle of our demonstration is illustrated 
in Fig. 1e–g. In our network, each user receives only one wavelength 
channel which consists of N − 1 temporally separate photons entangled 
with other N − 1 users, respectively. The central wavelength of the 
quantum channel for the user N is defined as λN. As shown in Fig. 1e, the  
quantum processor designs 2N − 3 pump pulses with the central wave-
lengths of λp1 to λp2N−3, respectively, where λp2N−3 = 1/( 1

λN−1
+ 1

λN
).  Due 

to energy conservation during the spontaneous parametric down-
conversion (SPDC) process, the downconverted photon pairs are 
naturally frequency–time entangled and their spectra are symmetric 
with respect to the central wavelength of their pump wavelength. Due 
to the unique design of the pump wavelengths, all the symmetric wave-
length channels for the end users can share a different entangled state 
with each other, creating the fully connected graph of the network. 
Figure 1f conceptually illustrates the generation and distribution of 
quantum entanglement in the network. A train of tailored pump pulses, 
specifically designed in both wavelength and time domains, is used to 
generate quantum entangled photon pairs through SPDC processes. 
The entangled photon pairs are then distributed to the end users via 
the quantum channels, and each user receives one wavelength channel 
consisting of N − 1 temporally separate photons entangled with other 
N − 1 users, respectively. To effectively distinguish different photon 

pairs, we use the temporal multiplexing scheme to separate different 
pump pulses with a time interval of Δt, as shown in Fig. 1g. As a result, 
the downconverted photon pairs are also separated in the time domain 
by the same time interval.37. Then, one can distinguish different entan-
gled states according to the photon arrival time, which improves the 
signal-to-noise ratio of the quantum system. A key technique in the 
ATWM scheme is ensuring that all involved pump lasers can generate 
entangled photon pairs through the SPDC process. We take advantage 
of the type-zero chirped quasi-phase-matching configuration and the 
high-efficiency property of the lithium niobate-on-insulator ridge 
waveguides to achieve this scheme.

Experimental set-up and network performance
To demonstrate the versatility and flexibility of our approach, we perform 
network fusion on two independent polarization-entangled networks, 
each with ten users. The experimental set-up is depicted in Fig. 2. A fem-
tosecond laser with a repetition frequency of 60 MHz is first divided into 
two parts by a 50:50 fibre beam splitter (FBS) and then sent to the  
quantum processors A and B to construct the fully connected networks 
using the ATWM scheme. The second harmonics of pump lasers with 
specific design in wavelengths and time domain are injected into  
a chirped periodically poled lithium niobate (CPPLN) waveguide 
(Supplementar y Section I) to generate polarization Einstein–Podol-
sky–Rosen (EPR) pairs in the Bell state |ϕ+⟩n = 1/√2(|H⟩s|H⟩i + |V⟩s|V⟩i),  
via SPDC processes in a Sagnac loop, where n is the wavelength number 
of the pump pulses, and s and i denote signal and idler photons, respec-
tively. Finally, a thin-film DWDM filter is utilized to divide the entangled 
photons and allocate the unique International Telecommunication 
Union (ITU) channels to the end users. The details of the experimental 
set-up are provided in the Methods. Due to the unique design of the 
pump lasers and high efficiency of the CPPLN waveguides, each pair of 
quantum channels shares one pair of entangled photons with each 
other, forming a fully connected mesh in the quantum correlation layer 
of the network.
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Fig. 2 | Experimental set-up for the network fusion of two fully connected 
networks. The quantum processors of networks A and B construct the polarization-
entangled fully connected networks by using the ATWM scheme. In each network, 
the femtosecond laser pulses from a mode-locked fibre laser are multiplexed into a 
series of pump pulses and are frequency-doubled in a CPPLN waveguide. After passing 
through a phase compensator, the produced second harmonics create entangled 
photon pairs in the second CPPLN waveguide in a Sagnac loop. The quantum 

processor allocates the entangled photons to the end nodes using an ITU DWDM  
filter and sends one link to Charlie, which performs the BSM using a combination of a 
50/50 FBS, fibre polarization beam splitters (FPBS) and SNSPDs. TDC, time-to-digital 
converter; AWG, arrayed waveguide grating; WDM, wavelength division multiplexing 
filter; HWP, half-wavelength plate; QWP, quarter-wave plate; DG, diffraction 
grating; AL, achromatic lens; DM, dichroic mirror; DPBS, dual-wavelength PBS; PM, 
polarization-maintaining; SM, single-mode; DHWP, dual-wavelength half-wave plate.
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Before demonstrating the network fusion based on multi-user 
entanglement swapping, we first investigate the performance of the 
fully connected network constructed using the proposed ATWM 
scheme. To show the advancement of our scheme, we construct a 
20-user network as a demonstration. During this experiment, a total 
of 37 pump pulses with central wavelengths varying from 1,552.12 nm 
to 1,537.79 nm are used to generate the correlative photon pairs via the 
SPDC process in the CPPLN2 waveguide. A DWDM filter with ITU chan-
nels of CH31 to CH50 are leveraged to allocate the downconverted 
photons to the end users, respectively. To characterize the perfor-
mance of the constructed network, we measure the coincidence counts 
between the 20 users after the entanglement distribution. The meas-
urements are performed simultaneously for every ten users owing to 
the limited detection equipment, and the downconverted mean photon 
number for each photon pair is controlled to be μ ≈ 0.01 per pulse. 
The experimental results are shown in Fig. 3a, in which any two users 
have coincidence events with a count rate over 104 in 5 s. This means 
that any two users share one pair of entangled photons with each other, 
indicating a fully connected topological graph has been established. 
Due to the ATWM scheme, the end users can easily identify the entan-
gled photons generated during each SPDC process and are able to 
calculate the coincidence count according to the photon arrival time. 
Figure 3b shows all the temporal cross-correlation functions among 
the 20 end users. The cross-correlation peaks in the column of CH31 
(N) are the coincidence counts with CH32 (N + 1) to 50 under different 
delay times calculated by taking detection results of CH31 (N) as the 
reference signal. These results confirm our proposed scheme can be 
used to construct a large-scale quantum network with a fully connected 
topology structure. Our proposed fully connected network can be 
encoded using time-bin (Supplementary Section II) and polarization 
degrees of freedom.

To guarantee the high quality of the entanglement swapping, it is 
crucial for each network to ensure the end users share high-quality 
polarization-entangled states with other users. The quantum proces-
sors first construct their ten-user polarization-entangled networks 
using the ATWM scheme as mentioned above. At this time, only 17 pump 
pulses with the central wavelength varying from 1,552.12 nm to 
1,545.7 nm are used to pump the CPPLN waveguides and the end users’ 
channels turn into CH31 to CH40 for each network. To characterize the 
received polarization-entangled states, each user in two networks is 
equipped with a superconducting nanowire single-photon detector 
(SNSPD) and a polarization state analyser consisting of a 
half-wavelength plate, a quarter-wave plate and a PBS. We investigate 
the polarization entanglement of the networks by measuring the 
two-photon interference fringes in two mutually unbiased bases |H⟩ / |V⟩ 

and |D⟩ / |A⟩ using the standard two-photon interference technique38. 
Figure 4a,b shows the typical interference fringes between CH31 and 
other users in networks A and B, respectively. The visibility of the 
interference fringes for each state was measured to be above 95%, 
exceeding the 70.7% local bound of Bell’s inequality39, and reveals the 
existence of polarization entanglement in all available channel pairs. 
We calculate the fidelities of all the involved states in two networks  
as compared with the ideal Bell state |ϕ+⟩ = 1/√2(|H⟩s|H⟩i + |V⟩s|V⟩i)   
and find that the fidelities exceed 96% for all measured channel pairs,  
laying a solid foundation for high-quality network fusion based on 
entanglement swapping.

Realization of multi-user entanglement swapping
Next, we demonstrate the quantum fusion of the two 
polarization-entangled fully connected networks by performing 
multi-user entanglement swapping. To merge the two 10-user net-
works into an 18-user network in quantum correlation layer, both the 
quantum processors send the channel CH31 to the third-party Charlie 
to perform the BSM by interfering them on an FBS, as shown in Fig. 2. 
To enable the communication between each pair of the users in two 
independent networks, one needs to establish entanglement between 
all the end nodes that never interacted by entanglement swapping. This 
requires a high-visibility HOM interference between all the involved 
photons corresponding to each quantum state in CH31 from the two 
networks. Due to the ATWM scheme, each end node uses only a single 
wavelength channel, and every quantum state can be distinguished 
based on photon arrival time, providing the necessary condition for 
high-visibility HOM interference among multiple users simultaneously. 
The two network providers can achieve the entanglement swapping 
between any two users from different networks by carefully adjusting 
the delay of pump pulses to overlap the corresponding CH31 signals 
on the FBS.

As a reliability check before performing the experimental test of 
bilocal hidden variable models for the swapped entangled pairs, we 
first measure the HOM interference for the two networks. To achieve 
a high-visibility interference between two networks, we exploit two 
kinds of narrow-band grating filter with a bandwidth of 0.1 nm and 
0.2 nm for CH31 photons and other channels, respectively, to suppress 
the spectral distinguishability. See Supplementary Section III for fur-
ther details about the experimental settings. The measured HOM 
interferences are shown in Fig. 5, in which Fig. 5c–k and Fig. 5l–t are the 
HOM interferences for the time settings in Fig. 5a and Fig. 5b, respec-
tively. The visibilities defined as Vdip = 1 − R0/Rt, where R0 and Rt  are 
fitted counts at zero and infinite delays, respectively, are found to be 
over 75% for all the entangled state, with the highest and average 
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visibilities of 90.7% and (83.5 ± 3.4)%, respectively, which break the 
classical boundary of 50%.

Characterization of the entangled states
We confirm successful entanglement swapping of two networks by test-
ing the entanglement of the previously uncorrelated photons for all the 
involved photon pairs. The specific states of the swapped entangled pairs 
depend on the result of the BSM. Consider the successful generation of both 
initial entangled states |ϕ+⟩n = 1/√2(|H ⟩CH31A |H ⟩λn + |V ⟩CH31A |V ⟩λn )  

and |ϕ+⟩m = 1/√2(|H⟩CH31B |H⟩λm + |V⟩CH31B |V⟩λm ) , where CH31A  and  
CH31B represent the CH31 photons from networks A and B, respectively, 
and λn and λm represent the correlated idler photons in CH32 to CH40 
of networks A and B. When overlapping the photons CH31A and CH31B 
on the FBS, the overall states of the entangled photon pairs would be 
cast into

|ψ⟩ = |ϕ+⟩n ⊗ |ϕ+⟩m = 1
2
(|H⟩CH31A |H ⟩λn + |V ⟩CH31A |V ⟩λn )

⊗ (|H ⟩CH31B |H ⟩λm + |V ⟩CH31B |V ⟩λm ) =
1
2
(|ϕ+⟩CH31ACH31B |ϕ

+⟩λnλm
+|ϕ−⟩CH31ACH31B |ϕ

−⟩λnλm + |ψ+⟩CH31ACH31B |ψ
+⟩λnλm

+|ψ−⟩CH31ACH31B |ψ
−⟩λnλm) .

(1)

Charlie implements the BSM by HOM interference at a 50/50 FBS 
and subsequent two fibre polarization beam splitters, as shown in Fig. 2. With 
these experimental configurations, one can discriminate two of the four 
Bell  states |ψ+⟩CH31ACH31B = 1/√2(|H⟩CH31A |V ⟩CH31B + |V ⟩CH31A |H⟩CH31B )  
and |ψ−⟩CH31ACH31B = 1/√2(|H ⟩CH31A |V ⟩CH31B − |V ⟩CH31A |H ⟩CH31B ) , which 

is the optimum efficiency possible with linear optics. A twofold coinci-
dence detection event between either DH1 and DV2 or DV1 and DH2 indicates 
a projection on |ψ−⟩CH31ACH31B , while a coincidence detection event 
between either DH1 and DV1 or DH2 and DV2 indicates a projection on 
|ψ+⟩CH31ACH31B. It is worth noting that the BSM results for different photon 

pairs can be easily identified according to the photon arrival time owing 
to the ATWM scheme. We select the Bell state |ψ−⟩CH31ACH31B as an example 
to demonstrate the multi-user entanglement swapping between two 
networks. Measuring two-photon interference under two mutually unbi-
ased bases can detect whether the quantum state has breaking inequali-
ties. We control the projection basis of idle photons in network A as 
|H⟩ / |V ⟩ and |D⟩ / |A⟩, respectively, and measure the statistical quadruple 
coincidence counts by scanning the half-wave plate angle of idle  
photons in network B. The typical experimental results are shown  
in the Fig. 6. We obtain the average visibilities of the interference frin
ges to be Vswapped = (Rmax − Rmin)/(Rmax + Rmin) = (81.2 ± 2.0)%  and 
(79.8 ± 5.5)%  for the swapped entangled pairs CH32A and CH32B and 
CH32A and CH33B, respectively, for the temporal settings in Fig. 5a and 
Fig. 5b. The visibility achieved in our experiment clearly exceeds the clas-
sical bound of the CHSH inequality, revealing polarization entanglement 
between the swapped entangled pairs. Moreover, we calculate the fideli-
ties of the entangled states after the entanglement swapping using 
F = (3Vswapped + 1)/4. The typical results are shown in Fig. 6c, in which 
one can obtain an average fidelity of (84.5 ± 2) %. These results prove that 
polarization entanglement can be generated between the previously 
uncorrelated users in two networks by controlling the delay of pump 
pulses to overlap the signal photons of different photon pairs on the FBS. 
Ultimately, the two 10-user fully connected networks are merged into an 
18-user network in the quantum correlation layer after the multi-user 
entanglement swapping. All the end users can communicate with each 
other using the entanglement-based quantum key distribution protocol. 
See Supplementary Section IV for the analysis of quantum key distribu-
tion between each pair of users in the fused 18-user network.

Discussion
Here, we highlight the substantial advantages of our approach. First, our 
proposed fully connected quantum networks based on ATWM scheme 
have a distinct advantage in scalability and signal-to-noise ratio over 
the existing networks constructed using DWDM technique or beam 
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splitters. To add a new user into the latter, the quantum processor needs 
to multiplex a large number of quantum channels into each user’s fibre, 
requiring considerable modifications to the quantum system. In our 
scheme, only two more wavelength lasers are required to multiplex into 
the pump pulses for the SPDC processes, thanks to photon energy con-
servation. Besides, owing to the ingenious design of the pump pulses 
in temporal domain, the SPDC photons generated by different pump 
pulses can be detected in different photon time slots and the end users 
can clearly distinguish the photon detection results of each entangled 
state according to the photon arrival time. This characteristic would 
improve the signal-to-noise ratio and enable the end users’ two-party 
communication. Moreover, our proposed network has the nearly lowest 
system loss and most compact system architecture because only one 
DWDM filter is need to allocate the entangled photons to the end users. 
These salient characteristics make the ATWM scheme more suitable to 
construct a large-scale fully connected network. Second, each user con-
tains only one wavelength channel, which is conducive to subsequent 
quantum operations, such as quantum interference and frequency 
upconversion for quantum storage. Last, but most importantly, our 
proposed network fusion scheme based on multi-user entanglement 
swapping enables the connection of the remote users in different 
networks, merging two independent networks into a larger network. 
This approach can realize mutual communication between all users 
in different networks, which has important application prospects in 
constructing large-scale quantum networks in the future.

However, it cannot be denied that the ATWM scheme is not optimal 
in terms of resource requirements. For an N-user network with a fully 
connected graph in the quantum correlation, the quantum processor 
designs 2N − 3 pump pulses to pump the nonlinear waveguides, and only 
the entangled photon pairs shared among the N users are utilized to con-
struct the fully connected network structure. The quantum resources 
whose wavelengths are not the specific wavelength channels of the N 
users are underused. To make better use of quantum resources, we 
design an optimal scheme to construct a fully connected network with 
more end users by combining the ATWM scheme and DWDM technol-
ogy. In this scheme, by taking advantage of the DWDM technology, the 
N-user fully connected network is capable of expanding to a larger one 
with 2N − 3 end users while keeping the pump pulses unchanged; see also 
Supplementary Section V for more details about the optimized scheme.

Another prospective improvement of the networks can be real-
ized by utilizing more narrow-band photons to constructed the fully 
connected network architecture, which can potentially increase the 
efficiency of quantum storage and improve the interference visibil-
ity of entanglement swapping. An alternative method is exploiting 
narrow-band filters with a narrower bandwidth to deal with the pump 
lasers and the entangled photons23. In this case, to achieve the best 
system signal-to-noise ratio and secure key generation rate, a trade-off 

optimization of the pump power is required to balance the brightness 
of entangled photon pairs and multiphoton effects. Another feasible 
approach is to directly generate narrow-band photon pairs with central 
wavelengths and free spectral ranges matching ITU channels, using 
cavity-enhanced SPDC or spontaneous four-wave mixing processes 
in integrated quantum photonic devices, such as high-quality peri-
odically poled thin-film lithium niobate microring40 and silicon nitride 
microring chips29,41.

An interesting question is how to extend the proposed network 
fusion scheme to longer distances while maintaining the networks’ 
performance. To overcome the distance limit of quantum communi-
cation owing to the fibre loss, quantum repeaters42 mainly including 
components of quantum memory, entanglement swapping and distil-
lation, enable the entangled states to be distributed with a polynomial 
scaling in the distance, which facilitates the implementation of extend-
ing our network scheme to larger distances in the future. The most 
critical challenge in realizing practical long-distance quantum repeater 
networks is the establishment of robust entanglement between remote 
quantum memory nodes. Although great progress has been made 
in quantum memory in recent years43,44, it is still challenging to real-
ize large-scale and long-distance practical quantum communication 
networks using quantum repeaters with the capabilities of current 
technology. Another promising approach to extend the fully con-
nected networks constructed by the ATWM scheme to long distances 
is using the all-photonic quantum repeaters45. By harnessing repeater 
graph states in different repeater nodes processed by linear optical 
elements, all-photonic quantum repeaters are expected to enable the 
implementation of long-distance quantum networks while substan-
tially reducing the reliance on quantum memory46–48. The combina-
tion of all-photonic quantum repeaters and the ATWM scheme would 
provide a potential solution implementing long-distance multi-user 
fully connected networks and quantum fusion of remote networks 
towards scalable quantum internet.

Conclusion
In summary, we have successfully realized the quantum fusion of two 
independent 10-user networks based on multi-user entanglement 
swapping, merging them into a larger network with 18 users in the 
quantum correlation layer. The results show that the proposed ATWM 
scheme can be used to construct high-performance larger-scale net-
works with a fully connected topological structure. By performing 
the BSM between two end nodes, the users from different networks 
can establish entanglement after entanglement swapping, ultimately 
enabling every pair among the 18 users to communicate with each other. 
Our approach opens attractive opportunities for the establishment of 
quantum entanglement between remote nodes in different networks, 
which facilitates versatile quantum information interconnects and 
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has great application in constructing large-scale intercity quantum 
communication networks.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-025-01792-0.
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Methods
Multi-wavelength polarization-entangled photon-pair source
To construct polarization-entangled fully connected networks  
using the ATWM scheme, we develop a special polarization- 
entangled source based on a polarization compensator and a  
Sagnac loop, as shown in Fig. 2, to generate the EPR Bell states 
|ϕ+⟩ = 1/√2(|H⟩s|H⟩i + |V⟩s|V⟩i)  for all the pump pulses. In the physical 
topology layer of each quantum processor, the femtosecond laser 
pulses are multiplexed into a series of pump pulses with the wave-
length and time intervals of Δλp = 0.4nm and Δt ≈ 300ps, respectively, 
using arrayed waveguide gratings whose central wavelengths are 
identified by the ITU. Then, the pump pulses are frequency doubled 
in a CPPLN waveguide by second-harmonic generation (SHG). The 
CPPLN waveguides are fabricated by using the method of ultraviolet 
lithography and deep dry etching49 and enable effective SHG with 
over 15-nm pump wavelength range (Supplementary Section I). The 
residual pump pulses are suppressed by a wavelength division mul-
tiplexing filter with an extinction ratio of 180 dB. The multi-wave-
length second-harmonic lasers first go through a Fourier-transform 
set-up that consists of two diffraction gratings, two achromatic lens 
and a spatial light modulator (SLM) to compensate the polarization 
and phase of different wavelength pulses. The photons with diagonal 
polarization are first spectrally dispersed by a grating and then 
focused to an elongated spot with the wavelength varying from λmin 
to λmax  by an achromatic lens. A horizontal SLM with a resolution of 
1,920 × 1,200 pixels is placed in the focal plane of the lens to imple-
ment the phase control between the horizontal and vertical compo-
nents for different wavelength channels. One can modulate the 
polarization of the SHG pulses at different wavelengths by adjusting 
the corresponding phase of the diagram loaded on the SLM according 
to the spatial position of the spot. Then, the SH lasers are used to 
pump a CPPLN waveguide placed inside a polarization Sagnac loop 
to generate the polarization-entangled photon pairs. A dichroic mir-
ror is leveraged to separate the photon pairs from the SHG pulses, 
and the entangled photon pairs are ultimately allocated to the end 
users by using an ITU DWDM filter. See Supplementary Section VI for 
further details about the central wavelength of the pump lasers and 
quantum channels. The photons distributed to all the end users are 
detected by SNSPDs with a detection efficiency varying from 60% to 
80% and dark count rate of 40–100 counts per second. The photon 
detection results are recorded by a time-to-digital converter that is 
synchronized by the electric signal from the mode-locked fibre laser.

Data availability
All data are available in the article or its Supplementary Information. 
The data files supporting the plots in the main text are available via 
figshare at https://figshare.com/s/145209fe661ad4bcd80b (ref. 50). 
The data that support the findings of this study are available from 

the corresponding authors upon reasonable request. Source data are 
provided with this paper.
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